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Effects of an almost resonant spatial thermal modulation in the 
Rayleigh-%nard problem: quasiperiodic behaviour 

E M F Curadot and C Elphick 
Laboratoire de Physique Thtorique$, Universitt de Nice, Parc Valrose, 06034 Nice Cedex, 
France 

Received 1 July 1986 

Abstract. We consider the effect of prescribed spatially periodic temperatures at the 
bounding walls of a ZD Boussinesq fluid on I D  pattern forming transitions. We determine 
the normal-form equation for the slowly varying pattern amplitude. Quasiperiodic 
behaviour is found when one takes into account the deviation of the external wavelength 
modulation from the critical value for the onset of classical Rayleigh-BCnard convection. 

1. Introduction 

In hydrodynamic convective systems if a control parameter-for example the Rayleigh 
number R in the classical BCnard problem-is greater than a critical value R,, the 
system generally undergoes a transition from a stationary state (conduction state in 
the BCnard convection) to a spatially periodic pattern with a natural wavevector k,. 
The selection of the preferred pattern wavevector k, is a process not very well understood 
up to now. The natural framework to understand this selection mechanism is provided 
by convecting systems submitted to an external spatial modulation. 

Recently some experiments have been carried out by Lowe et a1 (1983) and Lowe 
and Gollub (1985a, b) to measure the effects of applying a spatially periodic electric 
field with wavevector k, to a layer of a nematic liquid crystal at the onset of an 
electrohydrodynamic instability. The competition between the natural and external 
periodicities leads to several interesting phenomena like commensurate states (i.e. 
stable states where the rolls are phase locked to the external forcing), incommensurate 
phases characterised by disturbances of the soliton type and chaotic phases. 

From the theoretical point of view several works by Coullet et a1 (Coullet 1986, 
Coullet and Repaux 1986a, b) have studied these phenomena in a generic way, where 
the unforced system is supposed to be described by an evolution equation: 

(1) 

assumed to be invariant under spacetime translations (TI x T ,  symmetry) and space 
reflections (2, symmetry). In (1) U is a set of scalar fields describing a one-dimensional 
pattern forming transition and L, N denote linear and non-linear differential operators 

U, = LU+ N (  U) 
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depending on some control parameters, say R, etc. The imposed periodic spatial 
forcing breaks the translational invariance and the forced system becomes invariant 
under the discrete group of translations 

x + x + 2 r n /  k, n E Z .  (2) 

The corresponding normal form equation for the slowly spatio-temporal varying 
amplitude A of the critical mode has been derived by Coullet (1986) by noting that 
the broken SO(2) symmetry becomes the restricted symmetry 

A + A  exp(i2r /n)  ( 3 )  

which leads in the almost resonant case k, = n(k,+ q )  ( q  is termed the misfit) at the 
leading order in the amplitude equation to a SO(2) symmetry breaking term of the form 

(4) a A n - l  

where CY is a small parameter measuring the forcing amplitude and A is the complex 
conjugate of A. 

Nevertheless, we observe in the case n = 1 that, if the forced system admits a 
stationary solution finite at the bifurcation point R = R,, then the external modulation 
will be coupled multiplicatively with U, implying that the forcing has no effect at the 
order given by (4). Therefore one is led to consider higher-order symmetry breaking 
terms in the amplitude equation. At the leading order they are of the form 

ff ZA aA2 alAI2. ( 5 )  

Since the dominant non-linear term of the unforced normal form is cubic in A, A, ( 5 )  
clearly shows that A and a scale in the same way in the neighbourhood of the instability. 
This scaling behaviour has already been found by Kelley and Pal (1978a, b) in the 
quasi-conduction regime ( R  << R,) but the stationary solution of this regime diverges 
when one approaches R, and therefore one is forced to introduce a new scaling at R, 
( A -  

The purpose of this paper is to study bidimensional convection with plane boundary 
walls that have some prescribed spatially periodic varying temperatures. We consider 
the almost resonant case k,=  k,+q. The particular case studied here is remarkable 
since it admits a finite stationary solution even at R = R, and a global scaling behaviour 
A - a. Also, quasiperiodic behaviour is found in some determined region of parameter 
space in accordance with the previous work by Coullet and Repaux (1986a). 

2. The forced pattern and the amplitude equation 

In suitable units bidimensional thermal convection for a Boussinesq fluid is described 
by the equations 

T, =AT+J(+,  T )  (60) 
A+, = d A 2 $  - RTX) + J(4,  A$)  (6b) 

where + is the stream function (a pseudoscalar under Z2),  T represents the temperature, 
(+ denotes the Prandtl number and J ( J ;  g )  =f,g, -Jgr. For + we employ stress-free 
boundaries at the top and bottom of the bounding walls 

(7a)  cc, = $22 = 0 on z = O ,  1. 
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For T the prescribed non-uniform boundary conditions are 

T =  1 + a  cos k,x 
T = -CY COS k,x 

o n z = O  

o n z = 1  
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where a is a parameter measuring a sufficiently weak external forcing. 
At the leading order in a the stationary solution of ( 6 a )  and ( 6 b )  is found to be 

T,= 1 - Z +  a t ( z )  COS k , x + O ( a * )  @ a )  
a 

~ , = - q ( z )  sin k e x + O ( a 2 )  
ke 

where (see figure 1) 

2 
(COS 8~ cosh p(z-2)  

> +   C COS^ 2 p  -COS 2 8 )  
sinA(z-l)+sinAz 

sin A 
t ( z )  = -- 

-COS 8 ( ~ - 2 )  c o s h p z + ( Z + z + l ) )  

c ~ ( z ) =  tZ , -  k:t 
and A, 6, p are given by the relations 

A2=(Rka) '13 -  k: 
p 2 -  a2 = k f + : ( R k f ) ' / '  

2pS =$a( Rk:)'I3. 
The stationary fluid velocities in the x and z directions are given by (figure 2 )  

u , = ( a / k , ) q ,  sin k , x + O ( a 2 )  ( 1 l a )  

V,=-CK(P COS k e x + 0 ( a 2 ) .  ( 1 l b )  
The corresponding pattern, called the forced pattern, is shown in figure 3 in the almost 
resonant case k, = kc+ q ;  the figure clearly shows the effect of the misfit q. 

It is worth remarking that the stationary solution ( 8 a )  and ( 8 b )  has no singularities 
when R, k,  approach the critical values for the classical problem with uniform heating 
R ,  = y5r4, k,  =  IT/^ (corresponding to a zero eigenvalue of the associated linear 

0 0.2 0.4 0.6 0.8 1 .o 
2 

Figure 1. Graph of the function I, cp related to the forced pattern via (8a) and (86) .  9 =0.1. 
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2 

Figure2. Graph of cpz introduced in ( l l a ) .  q=O.1. 
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Figure 3. Roll structure of the almost resonant forced pattern for mercury (a = 0.025) 
misfit 9 = 0.217. 

and 

operator L in ( 6 a )  and ( 6 b ) ) ,  which in turn shows the validity of the analytic expansion 
in powers of a in the neighbourhood of these critical values. We note that when R, 
k + R,, k, then A + T and the first term in ( 9 a )  becomes 4 cos TZ. 

In order to study the dynamics associated to ( 6 a )  and (66) we write 
T - T s  

and perform an asymptotic expansion of U in terms of a slowly varying amplitude 
A'(x, t )  (varying in a scale much larger than m a x ( 2 ~ / k , ,  27r/kC)): 

U=A'cp,,exp(ik,x)sin m + c c + % ( A ' , A ' ,  a, p ; x , z )  (12) 
where cp,, exp(ik,x) sin mz is the marginal mode of L, p = $d[( R - R , ) / R , ]  and % 
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represents the centre manifold contribution to U. Classical methods developed by 
Coullet and Spiegel (1983) and Elphick et a1 (1986) allows one to reduce the equation 
satisfied by U to a normal-form equation for A = A' exp(-iqx) 

(13) [ ( l  +a)/cr]A, = ( p  -4q2+ a2c2)A+ a2~1A-~rr41A12A+4(Axx +2iqAx). 
We note that equation (13) has a gradient structure 

where the Lyapounov functional 9 is given by 
[ ( ~ + u ) / u ] A , = - S ~ / S A  

9 = ( - ( p  -4q2+  a2~2)1AI2 -;a2c,(A2+ A') 

+$~r~1A1~+4( IA,1~+iq(AA~ - AA,))) dx. 
I 

From (14), one has 

and since 9 is bounded from below, equation (13) admits stationary solutions. 

contributions turn out to be of the form 
Let us say that the terms aA2, culA12 have not been included in (13) since their 

aq(c3A2+ c,lAI2). (16) 
Scaling analysis shows that (16) is a higher-order term and need not be considered in 
(13). We remark that, if a term like (16) is to be present in (13), then the gradient 
structure is broken (since c4# 2 4 .  

The constants cl and c2 in (13) are given by (the result of the integrals is omitted 
for the sake of brevity) 

Cl = 1 2  - 37T21, ( 1 7 0 )  
c2 = I2 - I 3  (176) 

where 

II = lo1 t~ cos 2rrz dz (180) 

0 Q + j T r z t  

[il;] = I: (2rr cos rrz sin m m +  m.rr cos mrrz sin rrz) 
53 m 
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Table 1. Numerical values of the normal-form coeficients c ,  , c2 

0.025 1.1877 6.6269 
7.5 1.1877 8.2929 
CO 1.1877 7.6174 

Close formulae for the sums in (186) and (18c) are difficult to find, but it is easy to 
show that they are convergent series yielding positive values for cI and c2 for any 
a > 0. Table 1 shows numerical values of cI and c2 for mercury (a = 0.025), water 
(a = 7.5) and a = CO (from ( 1 7 4  c1 does not depend on a). 

3. Transitions from the forced pattern to locked patterns 

A locked pattern is a stationary homogeneous solution A = Q eie of (13). One readily 
obtains the equations 

- a 2 c 1  sin 28 = o 
( p  -4q2+ ~ C ~ ) Q  - % P ~ Q ~  + a2cI COS 28 = 0. 

(19a) 

(196) 

The solutions 8 = m/2, 3 ~ / 2  of ( 1 9 4  are found to be unstable under phase perturba- 
tions. The bifurcation diagram associated to (196) is shown in figure 4 (a  broken curve 
represents the locked pattern with 6 = 7r/2, 3n/2). The transition from the forced 
pattern A = 0 to a locked pattern, stable under homogeneous perturbation, occurs on 
the critical surface in parameter space (p ,  q, a): 

pc= 4q2 - a 2 ( c 1  + c2)  (20) 
which measures the shift in the critical Rayleigh number R,  due to the forcing. 

-1.5 -1.0 -0.5 0 0.5 1.0 
P 

Figure 4. Bifurcation diagram associated with (196). A broken curve represents the unstable 
locked pattern 0 = */2, 3*/2. The amplitude is plotted as a function of fi = fi  -4q2 and 
for U = 0.025. 



Egects of an almost resonant spatial thermal modulation 1211 

4. Stability of the forced pattern and quasiperiodic behaviour 

The forced pattern ( A  = 0) is stable under homogeneous perturbations for p < pc and 
any value of q. The stability under inhomogeneous perturbations of wavevector k is 
studied by linearising (13) and imposing the existence of a marginal mode. This leads 
to the following marginal surface: 

( p  - 4q2 - k2)2 = 16k2q2 + (I“;. (21 1 

p;= -cr2(c2+~’c1/16q2) (22) 

The minimum of (21) is found to be at 

and the optimal wavevector being 

Therefore for p > p :  and 8q2>  a2c1 the forced pattern is unstable under finite 
wavelength perturbations. The marginal mode is readily found to be 

A =  [ ( 8 q 2 - ~ ’ ~ , ) ” 2 - ( 8 4 2 + a 2 ~ , ) 1 ’ 2  exp(ik,x) 

+ [ ( 8 q 2 -  a2c1)’ l2+ ( 8 q 2 +  ( I ~ C , ) ’ ’ ~ ]  exp(-ik,x) 

= a ,  exp(ik,x)+azexp(-ik,x) (24) 

and therefore this instability marks the appearance of quasiperiodic behaviour since 
the actual pattern is characterised by three wavevectors k,+ q, k, f k, + q. 

The next step is to study the stability of the quasiperiodic pattern. To do so one 
has to consider the non-linearities in (13), neglected in the linear analysis, introduce 
a new slowly varying amplitude B and perform an asymptotic expansion: 

A = a , B e x p ( i k , x ) + a , ~ e x p ( - i k , x ) + s P ( B ,  B , p - p : ;  x)  

where d is the centre manifold contribution to A. 
The equation for B is easily obtained: 

9 T4 k: 
3% 4q 

( y) B, = ( p  - p:) B - 7 (64q4 + a4c:)IBJ2B + 7 B,.. 

which tell us the supercritical nature and stability of the quasiperiodic pattern. 
Since ph < pc the transition to quasiperiodic behaviour occurs before the transition 

to locked patterns in the parameter region q2 > ta’c,. We finally mention that a similar 
analysis shows that the quasiperiodic behaviour arising from the locked patterns has 
a subcritical nature and therefore implies its instability. 

5. The actual quasiperiodic pattern 

At the leading order in A and (I the actual quasiperiodic pattern in the neighbourhood 
of p: (p-p;>O)  is given by 

(i) =(:)+sin T Z [  (i:k,)A exp[i(k,+q)xl+cc +O(a2, A’, A’, IA12, aA, aA) 1 
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where A is given by 

A = v [ a ,  exp(ik,x)+ a2 exp(-ik,x)l 

Explicitly the quasiperiodic fluid temperature is given by 

T(x, z ) =  1 - z + a t ( z )  cos k,x+277 sin m [ a ,  c o s ( k , + k , + q ) x + a 2 c o s ( k c - k , + q ) ]  
(29) 

and the quasiperiodic fluid velocities in the x and z direction are given by 

u,(x, z )= -cp ,  sin k,x-6.rrkcT cos .rrz[a, sin(k,+kl+q)x+a2sin(k,-kl+q)xl  
a 
k, 

(30a) 

(306) 

u2(x, z)=-acp cos k,x+6kc7 sin m [ ( k , + k , + q ) a l  cos(k,+k,+q)x 

+ (kc- k, + q)az cos(k,- k, + q)x]. 

Figure 5 shows the field lines associated with this quasiperiodic pattern. 
The quasiperiodic behaviour is better analysed by defining the following map: 

where x, denotes the position of the nth roll pair (middle point of the second roll) 
and 1 is the wavelength of the external forcing. With the help of (31) one defines a 
phase variable (3): 

4, = 2 d P ( X ,  ) - x, 1 (32) 

which measures the deviation in position of the nth roll pair from the locked value nl 
(fixed point of P). We can interpret the map P as a spatial Poincari section for the 

0.4 

z : [  0.2 

0 
X 

Figore 5. Roll structure of the almost resonant quasiperiodic pattern for mercury ( D = 0.025) 
and misfit q = 0.217. 
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4 = 0.21 7 ) .  

0 50 100 150 
Roil  position 

Figure 7. Roll size in I units as a function of the roll-pair position. 

continuous roll-phase variable. Figure 6 shows the behaviour of the phase variable 
for 60 roll pairs. We also show in figure 7 the change in roll size as a function of the 
roll position. 

6. Conclusions 

We have studied in this work, following the ideas of the recent work by Coullet et a1 
(Coullet 1986, Coullet and Repaux 1986a, b), how quasiperiodicity arises in a Rayleigh- 
Binard system subjected to a spatially periodic thermal forcing. This behaviour is 
found when one takes into account the misfit between the external wavevector and 
the critical wavevector for the onset of Rayleigh-BCnard convection. In the present 
case the corresponding amplitude equation contains higher-order SO(2) symmetry 
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breaking terms than the ones considered by Coullet (1986), which are of the form 
(k, = n(k ,+  4)). If n = 1 (the problem studied here) this yields a constant term aA"-l 

in the normal form. Since U (12) is multiplicatively coupled with the forcing the 
constant term cannot be present and one has to consider higher-order terms in the 
normal form. We have found that the leading one is proportional to a2A. 

For the cases n # 1, it is not difficult to compute the coefficients of the terms 
predicted by Coullet (1986): they all vanish due to Boussinesq symmetry, and again 
one has to go to higher orders. For instance, in the case n = 2, a symmetry breaking 
term a& is present in the normal form. Finally let us say that for forced convection 
in rotation terms of the form aA"-' are likely to be present in the amplitude equation. 
Work related to the last ideas is in progress. 
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